
Secure protocols for accountable warrant execution
Joshua A. Kroll

kroll@cs.princeton.edu
Edward W. Felten

felten@cs.princeton.edu
Dan Boneh

dabo@cs.stanford.edu

Abstract
We describe cryptographic protocols for secure execution of warrants or legal orders authorizing access

to data held by private parties. Using cryptography enables a better combination of security, privacy,
and accountability properties than would otherwise be possible. We describe a series of protocols, based
on different assumptions about trust and technical sophistication of the parties, and making use of well-
studied cryptographic tools. We report benchmark results from our prototype implementation of the
tools involved in one such protocol, and show that the protocol’s entire computational cost is easily
feasible even for very large data sets, such as “cloud” software service or telecommunications databases
comprising billions of records.

1 Introduction
It is common for law enforcement or intelligence agencies to require legal clearance, such as a court-issued
warrant or order, to get access to data about individuals. We can view this as a multi-party protocol involving
the agencies, the court, the data source, and possibly other parties. In this paper we consider how to use
cryptography to carry out this type of protocol while providing strong security and privacy properties.

To introduce the parties involved, consider the following scenario: an investigator wants to get access
to data from some data source pertaining to some identifier. The investigator communicates with a court,
and provides the identifier describing the particular data to be retrieved, along with evidence that a legal
standard required for access has been met. If the court agrees, it issues an order authorizing the investigator
to receive records about the specified identifier. On seeing the valid order the investigator is given access to
records from the data source relating to the specified identifier.

Although we describe the abstract protocol using terms such as “court” and “order”, we emphasize that
the protocol applies to a wider variety of cases. We describe here three example uses.

Example 1: Law-enforcement or intelligence agency access to phone records. In this example,
an intelligence analyst (the investigator) is given access to a phone carrier’s (the data source) records of a
targeted person (the identifier) when a special intelligence court (the court) finds (the order) that the analyst
has met a legal standard, such as Reasonable Articulable Suspicion, allowing access.

Example 2: Court order for access to business records. In this example, a police department (the
investigator) goes to a court (the court) to get an order (the order) for access to business records held by
a corporation, or by a third-party software service provider (the data source), and relating to individuals
within the corporation (the identifiers) who are under investigation.

Example 3: Cloud provider access to customer data. In this example, an employee of a cloud
provider (the investigator) gets formal clearance (the order) from the cloud provider’s General Counsel (the
court) to access protected data of a specific customer (the identifier) on a cloud server (the data source), in
order to investigate possible abuse.

1

1.1 Goals
Orders and warrants are conventionally executed using straightforward protocols that lack many important
security, privacy, and accountability properties. Our goal is to use cryptography to create protocols that
offer stronger guarantees.

For example, suppose we want to be able to execute an order without the data source learning which
individual was the subject of the order. Obvious ways to achieve this all create security problems. We
could try sending the investigator all of the data records (or providing real-time access to the records stored
elsewhere), and telling the investigator to access only the one record covered by the order; but then the
investigator could access many records undetectably, without an order. Alternatively, we could try having
the court give the investigator a secret key allowing access to the covered record; but this would require
secure storage of secret keys by the court, and if any of these keys were lost or compromised, then we would
have no way to verify what data records were leaked.

In the main body of this paper, we describe a series of protocols that use cryptographic tools to surmount
these obstacles, providing more robust security guarantees than are typically found in systems currently used
in practice.

1.2 Parties in the system
In the protocols we describe, there are six types of parties (see Figure 2):

• Si: data sources, such as telecommunications carriers or cloud service providers. Data source Si
collects data records xi,j,t, where i identifies the data source (e.g., the name of a cloud service or
telecommunications provider); j identifies the data subject (e.g., an individual’s name, phone number,
or email address); and t indicates the time interval, such as the date, at which the data record was
collected. We refer to (i, j, t) as the tag identifying a data record, and use xi,j,t to refer to the data
record itself. (We note that in order to prevent attacks based on traffic analysis and data volume, it
may be necessary for each data source to record one data record, possibly an empty one, for every
possible user j and for every possible time interval t.)

• I: the investigator that seeks legally authorized access to data records.

• C: the court or other entity that may approve the investigator’s access requests, according to a specified
legal standard.

• J : the judge, working as part of the court, who approves or denies requests. (In some cases, for clarity,
we consider the judge J and the court C to be the same party in the system.)

• Dk: decryption authorities who allow the investigator to decrypt the encrypted records after court
approval. In order to decrypt each encrypted record, the protocol requires the participation of every
decryption authority (or a pre-specified fraction, depending on the protocol parameters). In real-world
deployments, some of these decryption authorities may be run by parties in the protocol, such as the
court, while others may be disinterested third parties. The requirement of these decryption authorities
is intended to mitigate the possible loss or compromise of individual secret keys (since multiple secret
keys, one for each decryption authority, will now be required for decryption); as well as to provide
accountability via external involvement throughout the protocol.

• L: the auditor, who maintains a log of the protocol execution. Before proceeding with ordinary protocol
steps (such as the court’s approval of a warrant request, or the decryption of an approved record), each
party will confirm the current step with the auditor L, and wait for confirmation that it has been
logged.
In addition, depending on the particular protocol, the parties may send additional information to
L, to enable further third-party and/or public audit. Some of this additional information may not be

2

sensitive, and can be logged directly to L; while some may be secret, such as the identities of individuals
who are the subjects of warrants, and thus must be encrypted before being sent to L.
Whenever auditing information needs to be encrypted, we require the parties to encrypt it using a
public-key (asymmetric) encryption system, to a public key pkL which we call the escrow key. The
corresponding secret key, skL, needed to decrypt these audit log entries, must be a carefully-guarded
secret in real-world deployments. It is not needed during the ordinary course of operation, but if
security breaches or misconduct are suspected, then it may be retrieved, and used to decrypt and
examine the sensitive components of the audit log.
In this case, we distinguish between after-the-fact auditing checks, which require the auditor to obtain
the secret escrow key, skL, and use it to decrypt the sensitive audit log entries; and on-line auditing
checks, which can be performed during the protocol’s execution, using only public information available
to the auditor, and serve to ensure that the information encrypted under the escrow key is accurate, and
that it will provide as thorough an auditing trail as possible in the event of subsequent after-the-fact
audit. In designing secure protocols that provide accountability, an important objective is to ensure
that as many security guarantees as possible can be confirmed via auditing checks, with on-line checks
preferred over checks that can only be done after-the-fact.

Throughout the paper we assume that all parties in the system communicate over confidential and mutually
authenticated channels, for example, as provided by the TLS protocol [15].

1.3 Desired security properties
We now give an intuitive overview of several desired security properties, which we will refer to in the body of
the paper as we present each proposed protocol. To begin with, during ordinary operation of the protocol,
we would like to make sure of the following:

• Secrecy of the data records: Nobody learns the content of any data record, except the data source
who holds that record, and, if there is a court-approved order for precisely that data record, then also
the investigator.

• Accountability of the requests: If any party (other than the original data source Si) learns any
data record xi,j,t, then the audit log must contain (encrypted under the escrow key) both: (1) a request
for that record, cryptographically signed by the investigator’s key; and (2) a corresponding order for
that record, cryptographically signed by the court’s key.
We remark that these encrypted entries in the audit log can also serve as “sealed” cryptographic
commitments by the court to the warrant’s contents: if desired, when the court encrypts its signed
warrants under the escrow key, it can retain information that will later permit it to “unseal” the
encrypted audit log records, revealing the underlying warrant that it originally encrypted. Unsealing an
encrypted audit log order in this way will always yield the exact order which the court initially “sealed”.
Likewise, the analogous audit log entries from the investigator can serve as “sealed” commitments to
the investigator’s requests.
This guarantee means that during the ordinary execution of the protocol, even without obtaining the
secret escrow key to decrypt any entries, anyone will be able to check the log and see exactly how
many orders have been issued (and thus how many corresponding data records have been decrypted).
The guarantee also implies that even if the court’s or investigator’s keys were lost or compromised, the
keys still could not be used to leak unauthorized records without leaving a trail of this activity in the
audit log.

• Secrecy of the requests: Nobody except the investigator and the court should learn which identifiers
(i, j, t—i.e., the data source, the subject, and the time stamp) were requested by the investigator, unless
an audit is deemed necessary and the auditor provides the secret escrow key skL and/or asks parties
to “unseal” some of the commitments.

3

Most of these security properties will depend on cryptographic assumptions: for example, that parties
cannot decrypt encrypted messages without knowledge of the secret decryption key. These are standard
assumptions, which we discuss in detail in the body of the paper.

In addition, every security property will depend on at least some of the parties being honest participants:
i.e., adhering to the protocol and protecting their secret keys. For example, if the investigator, the court,
and all the decryption authorities are dishonest and collude with each other, they can access records without
a warrant and without leaving a trail; but this is very unlikely if the decryption authorities are chosen wisely.
We also cannot prevent a party who knows information from publishing that information or giving it to a
third party. For example, if the investigator receives a record pursuant to an order, no protocol can prevent
the investigator from publishing that record. There is no choice but to rely on legal prohibitions to deter
such behavior.

In real deployments of secure systems, however, we must contend with the fact that multiple parties may
fail to adhere to the protocol, or their computer systems may be compromised or secret keys leaked. Ideally,
a secure system should include redundant measures, so that even under such circumstances, some security
guarantees are preserved. We briefly enumerate a few of these desired robustness guarantees:

• Robustness to compromise of data sources: The risk of loss or compromise of secret keys is
particularly apparent at the data sources Si, since they will be processing and encrypting large streams
of data records over long periods of time. Thus, we would like it to be the case that the data source
Si maintains no long-term secret keys, so that a compromise of a data source at one particular time
does not also risk leaking data records from past or future data streams. In all our designs, the data
sources encrypt data records using public-key encryption schemes (rather than symmetric-key), which
do not require them to maintain any long-term secret keys.

• Robustness to partial compromise of decryption authorities: We assume that the secret keys
held by some decryption authorities Di may be compromised or lost. As long as only a small number
of authorities are affected there should be no impact to the security and availability of the system. The
exact parameters, determining the trade off between how many failures are tolerated and how many
of the decryption authorities we must trust, is a matter of policy.

• Independence of the auditor: Clearly, the security of the auditor L is paramount for accountability.
However, even if L is not participating correctly, the system should still provide as many security
guarantees as possible. In particular, even without the correct checks by the auditor, we would like the
protocol to guarantee secrecy of the data records and requests, as described above (assuming that the
other parties are participating correctly, and that other secrets, including the secret escrow key, have
not also been leaked).

• Rate limiting: If the secret keys of the court C are compromised, then the investigator may learn
the contents of arbitrary records, in lieu of those that are actually approved by a judge. However, we
require that the total number of data records leaked still matches the number of court approval entries
in the audit log.
In addition, even if the auditor L and the court C are both compromised, we would like protocol to
limit the amount of information leaked. That is, even in such an extreme scenario, no investigator
should be able to learn the contents of the entire database; rather, the rate at which items are retrieved
should be capped by the decryption authorities Di, assuming a subset of them still function correctly.

Finally, we wish to set up additional operational safeguards that would protect the data even in the
event that the cryptography used in the protocol fails entirely. The challenge in achieving this stems from
the fact that our protocols, described below, operate by encrypting each record with a separate encryption
key, and giving all of the resulting ciphertexts to the investigator. When an order is issued, the investigator
will be able to recover the secret key needed to decrypt the individual records covered by the order. If
the investigator possessed sophisticated technical capabilities that enabled it to bypass the cryptography, it
would have the ability to decrypt and access all the records. We would like protocols that are fully secure

4

under standard assumptions about the investigator’s power, and limit the damage in extreme cases where
those assumptions fail. In other words, even in the event of a failure of cryptography, the protocol should
provide security no worse than standard approaches used in practice. Therefore, as an additional safeguard
we propose the following security property:

• Information-theoretic (“Shannon”) security: All encrypted records are held by an intermediary
(say, a “data custodian”, U), who will only reveal one encrypted record to the investigator for each
order issued and signed by the court. With this enhancement, the security is as good as standard
systems used in practice today, even if the investigator can entirely break the cryptosystems used to
protect records. In Section 6, we discuss the details of how to adapt our protocols in this way, as well
as outlining approaches to implementing the “data custodian” securely using untrusted parties.

1.4 Our results
We present five protocols with different security guarantees and varying levels of complexity. We start
with two simple protocols that achieve many of our goals, but require the court to maintain a secret key
that controls access to plaintext records. Even if we rely on tamper-resistant hardware at the court, this
centralized trust in a single component violates our design principles and precludes many desired security
guarantees.

We next describe a third protocol that achieves the same functionality as the first two, but replaces the
trusted hardware module with a set of decryption authorities that can be run by different organizations—
some of whom may be parties in the protocol, such as the court, and some of whom may be independent,
disinterested third parties. All decryption authorities (or a pre-specified fraction, depending on policy) must
participate in every decryption request approved by the court C, so that there is no single point of failure.
The downside is that the decryption authorities Di must see all of the investigator’s requests in the clear.
This may be undesirable, especially if some of the decryption authorities Di are independent third parties
who are not authorized to see the investigator’s activity.

Our fourth and fifth protocols provide significantly better security properties, though they require more
powerful cryptographic tools. Like the third protocol, they make use of multiple decryption authorities
so that there is no single point of failure; but in these final two protocols, the decryption authorities are
prevented from seeing which data items are being requested by the investigator. The authorities can only
verify that (i) the requests are approved by the court C and (ii) the requests are properly logged by the
auditor L. Our construction in these last two protocols builds on a protocol for adaptive oblivious transfer,
due to Green and Hohenberger [19], which is well suited for these settings. We extend this protocol to a
new notion, which we call auditable oblivious transfer, and make use of this new notion in our fifth and final
protocol, which provides the best security of the five, including strong on-line auditability guarantees.

2 A simple design requiring trust in the court’s computer systems
We begin with a simple design that gives the court C complete control over access requests. The system
assumes that the court’s computer systems can maintain a sensitive secret key sk∗ and fully control access
to and use of this key. This assumption is the primary weakness of this design, as discussed below.

Conventions. For clarity, we will describe all of our protocols without the presence of a “data custodian”
U who holds the ciphertexts, and serves them to the investigator when a successful request is made. However,
we emphasize that such a party should participate in any real-world instantiation of the protocols; without
such a party, our protocols cannot achieve the critical “Shannon” security property of Section 1.3. We discuss
how to add a data custodian to these protocols in Section 6.

Preliminaries. In all of the protocols we present below, we will make use of standard cryptographic
primitives:

5

• Secure channels. Throughout the paper we assume that all parties in the system communicate over
confidential and mutually authenticated channels, for example, as provided by the TLS protocol [15].

• Digital signatures. Any secure digital signature scheme is sufficient for our purposes here. Recall that
a digital signature scheme has three algorithms: key generation that outputs a secret signing key and a
public verification key, a signing algorithm that uses the signing key to sign messages, and a verification
algorithm that uses the verification key and a message to confirm that a given signature is valid.

• Labeled public-key encryption. We will need a standard public-key encryption scheme. The scheme must
be chosen-ciphertext secure and support labeled encryption [28]. Recall that such a scheme has three
algorithms: key generation that outputs a public encryption key pk and a secret decryption key sk, a
labeled encryption algorithm ct := Enc(pk, label,m), and a decryption algorithm Dec(sk, label, ct).
The label used in encryption and decryption is a public value bound to the ciphertext. It provides
context for the decryptor. If a ciphertext ct is created with a label i then decryption will fail if one tries
to decrypt ct with a different label i′ 6= i. We note that the assumption of labels is only a convenience,
as any chosen-ciphertext secure public-key scheme can be extended to support labels [28].

Protocol 1 (simple system). The system works as follows:

• Setup. The system is initialized as follows:

1. The court C generates a public/private key pair pk∗, sk∗ for a public-key encryption system as
well as a signing/verification pair for a signature scheme. The public-key pk∗ is sent to all data
sources Si while the secret key sk∗ is kept secret by the court C. The signature verification key
is sent to the auditor L.

2. The auditor L generates a public/private key pair pkL/skL for a public-key encryption system and
a similar such pair for a signature scheme. The log server L sends pkL and its public verification
key to the court C.

• Normal operation. All data sources Si send to the investigator I all their data records xi,j,t, each
encrypted under the public key pk∗. Here (i, j, t) is the data identifier as explain in Section 1.2. We
let

cti,j,t := E(pk∗, (i, j, t), xi,j,t)

denote the ciphertexts sent to I. Recall that this notation means that the data xi,j,t is encrypted using
the label (i, j, t) under the public-key pk∗.

• Investigator queries. When the investigator needs to decrypt a particular ciphertext cti,j,t it sends a
signed request to the court C requesting it to decrypt cti,j,t. The court approves or denies the request.
The court sends the request and all associated data to the log server L, encrypted using the log server’s
public key pkL and the ciphertext is signed by the court’s signing key. We refer to the contents of this
log message as the audit record.
Next, if the request is approved the court uses its secret key sk∗ to decrypt cti,j,t using the label (i, j, t).
The label ensures that the court is decrypting the correct ciphertext, namely the ciphertext associated
with identifier (i, j, t). It ensures that the investigator cannot submit a ciphertext associated with some
other (i′, j′, t′) and pretend that this ciphertext is for (i, j, t). Finally, the court sends the resulting
plaintext back to the investigator.

Remark 1. A small technical issue is that in the scheme above the court learns the plaintext xi,j,t where
as in Section 1.3 we required that only the investigator I learn the plaintext. This is easily corrected by
having the data sources Si double encrypt the plaintext, once under pk∗ and once under an investigator’s
public-key. Once the court decrypts the ciphertext it does not learn xi,j,t, but the investigator can now
recover the plaintext xi,j,t, as required.

6

S"

S"

�!

xi,j,t"

I"

ct"⟵"Enc("pk*,""(i,j,t),""xi,j,t!)"

""C"

J"

Log"

ct"
cti,j,t"

yes/no"

xi,j,t"
ct"

AuditRecord(i,j,t)"

H"

Figure 1: Hardware-based system. Each party Si is a data source (e.g. phone carriers, email service providers)
that encrypts data items xi,j,t using the public-key pk∗. Party I is the investigator, who will make decryption
requests to access data items. Party C is a court receiving a decryption request for ciphertext cti,j,t from I.
Party J is the judge that approves or denies the request. The hardware module H contains the secret key
sk∗ and responds to a decryption request only if the request is accompanied by a signature from the court
and a signature from the log server L to indicate that an audit record for this request has been logged.

Weaknesses. This simple system satisfies many of the requirements listed in the previous section. However,
a major weakness of this scheme is that it fully trusts the court’s computer systems. If the court’s computers
are compromised and sk∗ is exposed then the security of the entire system is undone and all encrypted
records can be decrypted by the attacker. Similarly, an attacker who obtains unrestricted oracle access to
the key sk∗ can decrypt as many records of its choice without leaving any trace.

Another difficulty with this system is that there is no logging enforcement. Normally, all queries are
logged, but if the court’s computer systems are compromised it may be possible to decrypt some records
without logging the request at the log server L.

A hardware-based mitigation. One way to mitigate the risks described above is to embed the court’s
secret key sk∗ in a tamper resistant hardware such as IBM’s CryptoCard secure co-processor [20]. The
hardware resides at the court and interacts with its environment through a specific interface described
below. If the hardware H is ever tampered with or given invalid inputs it destroys itself and erases its
internal memory including the secret key sk∗. The system looks as in Figure 1.

The hardware-based system we describe ensures that the key sk∗ is never used unless (i) the court signs
the request, and (ii) the log server L confirms that the request is properly logged. This way unauthorized
decryptions will be discovered by an audit, assuming we trust that sk∗ cannot be extracted from the hardware.
Moreover, in the event that the court’s signing key is compromised by an attacker, that attacker can issue
decryption requests to the hardware H for any ciphertext cti,j,t of its choice (and that cannot be avoided),
but those requests will all be properly logged by the log server and discovered during an audit.

Protocol 2 (hardware-based system). Using the tamper resistant hardware, denoted by H, a query from
the investigator for record (i, j, t) is processed as follows:

1. We assume the hardware H maintains a counter ctr that is set to 0 when the system is first setup. The
hardware increments the counter every time it interacts with its environment. This counter is never
decremented and is used to prevent replay attacks on H. We also assume that at setup time H is given
the log server’s public encryption key pkL, the log server’s signature verification key, and the court’s
signature verification key.

2. Once the court C approves a query for record (i, j, t) from the investigator it first reads the current
state of the counter ctr from H.

7

3. The court C then sends the ciphertext ctC := Enc
(
pkL, ctr, (i, j, t)

)
to the log server encrypted under

the log server’s public key pkL (here the label is set to ctr).
The log server records the request and responds with a digital signature σL on ctC. The data sent
to the log server can include all other data associated with the investigator’s request encrypted under
pkL, but as a separate ciphertext.

4. Next, the court C sends to the hardware H the data(
(i, j, t), cti,j,t, ctC, randC, σL, σC

)
where randC is the randomness used when creating ctC. σC is the court’s signature on the entire
request.

5. The hardware H checks that σL and σC are valid signatures, that ctr is the current value of its internal
counter, and that ctC is indeed the result of encrypting (i, j, t) under pkL using randC and label ctr. If
all these checks succeed the hardware H uses the secret key sk∗ to decrypt cti,j,t using the label (i, j, t).
The label ensures that H is decrypting the correct ciphertext, namely the ciphertext associated with
(i, j, t). Next, it re-encrypts the plaintext under the investigator’s public encryption key and sends the
resulting ciphertext to the court’s computer.

6. The court sends the returned data from H to the investigator. The investigator decrypts and obtains
xi,j,t in the clear.

If we believe that the hardware H can never be coerced into deviating from the protocol above then all
decrypted records will be properly logged on the log server L. Even if the hardware H is stolen and operated
in a malicious environment it will not be possible to decrypt records without having that action logged on
the log server. Of course, if the tamper resistance assumption is violated and a sophisticated attacker can
extract sk∗ from the hardware H then all security is lost.

In the next section we describe a solution that does not rely on trusted hardware, but instead relies on
distributing the key sk∗ across multiple organizations.

3 Eliminating a single point of trust
The system described in the previous section puts considerable trust in the court’s computer systems. The
risk is that a single organization holds the decryption key sk∗ putting the entire system in danger if that
organization fails to protect the key.

Our solution is to introduce a set of decryption authorities D1, . . . , Dn that hold shares of a secret key
that functions as sk∗ (see Figure 2). The authorities can be distributed across multiple organizations so that
a compromise of several authorities cannot bring down the security of all records managed in the system.
Multiple authorities must be involved in a successful decryption of an encrypted record.

Most likely one decryption authority will reside at the court and that authority can be given special weight:
it must participate in every decryption request. We discuss policies of this nature, where some authorities are
required to participate, and how to implement them efficiently in Section 6. Another decryption authority
could reside at the investigator. Other authorities can include the data sources Si and possibly other,
disinterested third-party organizations.

Decryption authorities. We differentiate between two types of authorities:

• Cleared authorities are decryption authorities who are cleared to see the contents of the investigator’s
query in the clear. The court C, for example, would function as a cleared authority.

8

S"

S"

�!

xi,j,t"

I"

ct"⟵"Enc("pk*,""(i,j,t),""xi,j,t!)"

C"

J"

Log"

ct"
cti,j,t"

yes/no"

xi,j,t"
ct"

AuditRecord(i,j,t)"

D1"

Dn"

�!
sk1!

skn!

cti,j,t"

Figure 2: Using cleared decryption authorities. The parties involved are as in Figure 1 except that now
the secret key sk∗ is shared among n cleared decryption authorities. These authorities are needed for every
decryption request and they help ensure that every request is properly logged at L.

• Uncleared authorities are decryption authorities who are not allowed to see the contents of the
investigator’s query in the clear. For example, the system may use some of the data sources as
uncleared authorities. These authorities ensure that the court signs every request, but do so without
seeing the requests in the clear.

In this section we consider the case where all the decryption authorities are cleared authorities. In the next
section we show how to use a mix of cleared and uncleared authorities.

3.1 The system when all decryption authorities are cleared
This case is relatively easy. We use a similar mechanism to the one in the previous section, except that now
the secret key sk∗ is shared across the decryption authorities D1, . . . , Dn, as shown in Figure 2.

Cryptographic primitives. To make this work we need a public-key encryption system that supports
threshold decryption [14]. In such a system the decryption key sk∗ is shared across multiple decryption au-
thorities D1, . . . , Dn. To decrypt a ciphertext cti,j,t the court C sends the ciphertext to all active authorities.
Each authority applies its share of the secret key and responds with a “partial” decryption of cti,j,t. The
court C combines the partial decryptions into a complete decryption of cti,j,t. The number of decryption
authorities and the subsets authorized to decrypt is a matter of policy.

The public-key encryption system must be chosen-ciphertext secure and support labels as in the previous
section. Several such schemes support threshold decryption [29, 3, 9]. The system of Shoup and Gennaro [29]
is especially well suited for our purposes.

Protocol 3 (threshold decryption system). The system is similar to Protocol 1. We describe the main
differences.

• Setup. the system is initialized as in Protocol 1, but now the public/private key pair pk∗, sk∗ is
generated for a public-key encryption system that supports threshold decryption, as in [29]. Then the
key sk∗ is split across all decryption authorities D1, . . . , Dn and destroyed. The secret key sk∗ will
never be reconstituted at a single location. If needed, the key sk∗ can be generated in split form by
running a distributed protocol between the decryption authorities D1, . . . , Dn as in [17, 5].
The remaining setup steps are as in Protocol 1. In addition, the log server maintains a counter ctr that
is initially set to 0 and is incremented after every decryption transaction completes.

• Normal operation. The same as in Protocol 1.

9

• Investigator queries. The protocol is similar to the one in Protocol 2 with the hardware module H
replaced by the decryption authorities.

1. The court C receives a signed request for record (i, j, t) from the investigator I. Once the judge
approves the request, the court reads the current state of the counter ctr stored at L.

2. The court C then sends the ciphertext ctC := Enc
(
pkL, ctr, (i, j, t)

)
to the log server L encrypted

under the log server’s public key pkL (here the label is set to ctr) and the ciphertext is signed by
the court. The log server adds the data to the log. In addition, the court sends all data associated
with the request to L, encrypted under pkL with label ctr and signed by the court.

3. Next, the court C sends
(
ctr, (i, j, t), cti,j,t, σC

)
to a subset of the decryption authorities that

is capable of decrypting the ciphertext. Here σC is the court’s signature on the request. Each
authority logs the request with the log server by sending it the message from C encrypted with
pkL and signed by the authority’s signing key. Once the log server confirms that ctr is the current
value of its counter the authority applies its share of the secret key sk∗ to partially decrypt cti,j,t
with label (i, j, t). It sends the resulting partial decryption to C.
As before, the label (i, j, t) ensures that the decryption authority is decrypting a ciphertext asso-
ciated with (i, j, t) and not some other index (i′, j′, t′). If the label and the ciphertext cti,j,t do
not match then C will be unable to combine the partial decryptions into the plaintext xi,j,t.

4. The court C combines all the partial decryptions it receives and sends the fully decrypted cti,j,t
to the investigator. Remark 1 can be used to ensure that the court does not see the plaintext
xi,j,t in the clear.

The security properties are similar to those of Protocol 2, but the tamper resistant hardware assumption
is replaced by the assumption that it is not possible to corrupt a majority of the decryption authorities.

Observe that if the court’s key is completely compromised by an attacker, that attacker can decrypt
arbitrary ciphertexts cti,j,t of its choice (and this cannot be avoided), but the log will contain a complete
record of which ciphertexts were decrypted.

4 Eliminating a single point of trust using uncleared authorities
In this section we address the problem of using decryption authorities D1, . . . , Dn that are not cleared to
see the investigator’s decryption requests. For example, the data sources Si and other government and non-
government organizations could serve as uncleared authorities. They are responsible for making sure that
decryption takes place only after court approval and that all information is properly logged, but they are
not allowed to see any details of the investigator’s query.

While all our constructions up until now used simple public-key cryptography, the need for “blind”
decryption authorities requires more sophisticated tools.

Our starting point is an approach similar to Protocol 3 with the important difference that the court
“blinds” every decryption request before sending it to the authorities D1, . . . , Dn. The bulk of this section
focuses on how to blind these requests while enabling the authorities to verify (i) court approval and (ii)
proper logging.

Oblivious transfer. Our protocols are derived from a cryptographic mechanism called oblivious transfer
which has a long and extensive history in the cryptographic literature (see e.g. [26, 16, 24, 8, 19, 21]). In
simple terms oblivious transfer is a protocol involving two parties called S for “sender” and R for “receiver”
where:

• the sender’s input is a set of s messages m1, . . . ,ms, and

• the receiver’s input is an index ` ∈ {1, . . . , s}.

10

S and R interact and at the end of the protocol we must have that: (1) the receiver R learns message
number `, namely m`, and nothing else, (2) the sender S learns nothing and is therefore oblivious to the
value of `. Modern oblivious transfer protocols (e.g. [24, 8, 19, 21]) allow the receiver to request multiple
messages and even do so adaptively (i.e. the receiver may choose each query based on previous executions
of the protocol).

To see the relation to our problem we can think of the decryption authorities D1, . . . , Dn as if they were
holding all the plaintexts {xi,j,t}. We can think of the investigator as having a set of indexes R = {(i, j, t)}
of interest and it wishes to retrieve from the decryption authorities all plaintexts associated with indexes
in R. The investigator should learn nothing about plaintexts outside of R and the decryption authorities
should learn nothing about the set R.

4.1 Auditable oblivious transfer
While oblivious transfer is closely related to our problem, the current formulation of oblivious transfer does
not quite meet our needs. Using a basic oblivious transfer protocol between the investigator and the data
sources, we would have no way of ensuring that the records accessed by the investigator were the same ones
authorized by the court. Thus, we need a primitive with stronger accountability properties.

In particular, we need to ensure that (1) every decryption transaction is properly logged on the log server,
(2) the oblivious sender can be implemented as a set of decryption authorities that must be involved in every
transfer, and (3) the data sources Si do not hold any long-term secrets. We therefore first re-formulate the
concept of oblivious transfer to address these issues and then construct our system by adapting a specific
oblivious transfer protocol to these settings.

We refer to this concept as Auditable oblivious transfer (aOT). In its simplest form an aOT is a two-
party functionality between R and S defined as follows: a trusted party T generates a key pair pkL, skL for
a public-key encryption system and a key pair pkC, skC for a digital signature scheme. The functionality is
then:

• inputs: R is given (skC, pkL, `) for some ` ∈ I, and
S is given ({m`}`∈I , pkC, pkL).

• outputs: R obtains m`, and
S obtains an auditing record, namely

(
c := Enc(pkL, `), Sign(skC, c)

)
.

This captures the fact that S obtains an auditing record for the request that R made. This can be extended
to multiple (adaptive) message requests by R where for each request, S obtains an auditing record. The
formulation would mirror the adaptive definition of oblivious transfer as in [8].

Here party S represents both the decryption authorities and the log server. Party R represents both the
investigator and the court.

This notion still does not fully capture our needs. First, the the sender S needs to be split into n parties
S1, . . . ,Sn and all (or most) need to be contacted for every transfer. Second, in our settings the sender
S does not hold the messages {m`}`∈I . Instead, the receiver R has encryptions of these messages. This
captures the fact that the data sources Si can only encrypt the data under some public-key, but do not hold
long-term secrets.

Auditable threshold oblivious transfer. We further extend the functionality as follows. An auditable
threshold oblivious transfer is a tuple of interactive machines (R,S1, . . . ,Sn). We describe (informally) the
operation of these machines as an abstract multi-party functionality. The functionality is parametrized by a
public-key encryption scheme and a signature scheme. To describe the functionality we need a bit of setup.
First, a trusted party T generates two key pairs pkL, skL and pk∗, sk∗ for the public-key encryption system.
It creates shares (sk(1)

∗ , . . . , sk(n)
∗) of sk∗. The trusted party also generates a key pair pkC, skC for the digital

signature scheme. Second, let M = {m`}`∈I be a set of messages indexed by some set I. The trusted party
T encrypts all messages in M under the public-key pk∗, namely C∗ := {ct` := Enc(pk∗, `,m`)}`∈I . The set
C∗ corresponds to the set of ciphertexts held by the investigator in the real-world setup.

11

The functionality computed by (R,S1, . . . ,Sn) can now be described as follows. The machines are given
the following inputs:

• inputs: R is given (C∗, skC, pk∗, pkL, `) for some ` ∈ I, and
for i = 1, . . . , n machine Si is given (sk(i)

∗ , pkC, pkL).

• outputs: R obtains m`, and
for i = 1, . . . , n machine Si obtains an auditing record,

namely
(
c := Enc(pkL, 0, `), Sign(skC, c)

)
.

Even if all parties S1, . . . ,Sn collude, they learn nothing from the protocol beyond the auditing record.
Similarly, even if R colludes with a sub-threshold coalition of S1, . . . ,Sn they can learn nothing about the
decryption of any other ciphertext ct`′ ∈ C∗ for `′ 6= `.

The goals stated informally above can be extended to multiple (adaptive) message requests by R. After
each request, R learns the requested plaintext and the parties S1, . . . ,S` obtain an auditing record.

These definitions can be made precise using the real-world/ideal-world paradigm along the lines formu-
lated in [8] for adaptive oblivious transfer.

4.2 Cryptographic primitives
We construct an auditable threshold oblivious transfer by adapting an adaptive oblivious transfer protocol
due to Green and Hohenberger [19]. This protocol is the best suited for our needs and enables us to satisfy
the requirement that the data sources Si not hold any long-term secrets. Before describing our system we
first review the cryptographic primitives from which it is built.

4.2.1 Identity based encryption (IBE)

The oblivious transfer of [19] makes use of identity-based encryption, and in particular the Boneh-Boyen
IBE [2]. Recall that identity-based encryption (IBE) [27, 6] is a generalization of public key encryption where
public keys can be arbitrary strings. Here we will use data identifiers (i, j, t) as IBE public keys.

Briefly, an IBE system is made up of four algorithms:
SetupIBE generates a master public-key mpk and a master secret key msk,
ExtractIBE uses the master secret key msk to generate a secret key sk for a given public-key (i, j, t),
EncIBE(mpk, (i, j, t),m) encrypts a message m to a public-key (i, j, t), and
DecIBE(sk, c) decrypts a ciphertext c with a secret key sk.

The security requirement is that an adversary who obtains the secret keys for multiple identities cannot
break the security of ciphertexts encrypted for some other identity.

4.2.2 The Boneh-Boyen IBE system (BB-IBE)

Many IBE systems in the literature make use of pairings (e.g. [5, 2, 30, 18]). A pairing is an efficiently
computable (non-trivial) bilinear mapping e : G× Ĝ→ GT where G, Ĝ,GT are finite cyclic groups of some
prime order p. We let g be a generator of G and ĝ be a generator of Ĝ. With this setup the BB-IBE works
as follows [2]:

• SetupIBE chooses a random α in Zp, random g1, h in G, and consistent random ĝ1, ĥ in Ĝ as described
in [2]. It computes v = e(g1, ĝ)α and outputs

mpk = (g, g1, h, ĝ, ĝ1, ĥ, v) and msk = gα1

• ExtractIBE(msk, id) chooses a random s in Zp and outputs skid :=
(

msk · (gid
1 h)s, gs

)
.

12

• EncIBE(mpk, id,m) chooses a random r in Zp and outputs ct :=
(
m · vr, ĝr, (ĝid

1 ĥ)r
)
.

There is a similar decryption algorithm DecIBE(skid, ct), but its exact operation is not relevant to our dis-
cussion here. Selective IBE security follows from a standard assumption on pairing friendly elliptic curves.
Note that encryption does not use pairings and is comparable in speed to a standard elliptic-curve public-key
encryption.

4.2.3 Blind-IBE

The adaptive oblivious transfer of [19] exploits a property of BB-IBE called blind IBE, a concept introduced
in [19]. At a high level, a blind-IBE is an IBE system that supports “blind extraction,” namely it is possible
to request from the extract algorithm a secret key sk for a public key id without revealing to the algorithm
the value of id. The extract algorithm is effectively “blind” to the value of id. We refer to the discussion
in [19] for a complete definition of blind-IBE and its security definition.

We let BlindExtractIBE denote the two-party protocol to blindly generate a secret key for identity id.
Protocol BlindExtractIBE(id) runs between one party R who knows id and another party S who knows msk.
Both have mpk.

The detailed blind extract protocol BlindExtractIBE for BB-IBE can be found in [19, Fig. 1]. Here we sketch
the main idea.

1. Party R chooses a random y in Zp and computes

h′ ← gid
1 g

y . (1)

Observe that this h′ reveals no information about id. Party R sends h′ to S and in addition proves in
zero-knowledge to S that it knows (y, id) such that h′ = gy gid

1 .

2. Party S chooses a random s in Zp and computes sk′id :=
(

msk · (h′h)s, gs
)
. It sends sk′id back to R.

3. Party R checks that the blinded key sk′id = (d′0, d′1) is well formed by checking that the following
equality holds:

v · e(d′1, ĥĥ′) = e(d′0, ĝ) . (2)

If not, the received key is invalid and R aborts. If equality holds then R unblinds the key and re-
randomizes it by choosing a random z in Zp and computing

skid =
(
d′0 · (gid

1 h)z/d′y1 , d′1g
z
)

The resulting key skid is a valid key for the identity id, but S learns nothing about id. Similarly, R learns
nothing about the secret keys of other identities. The complete proof of security for this protocol is provided
in [19].

4.2.4 Secret sharing the IBE master secret

In our settings the master secret key msk is split across a number of decryption authorities. All (or most)
of the decryption authorities are needed to generate the secret key for a given identity id. The number of
decryption authorities and the threshold needed to generate a secret key is a matter of policy.

Splitting up the master secret in the protocol BlindExtractIBE from Section 4.2.3 is done as follows:

1. Shared IBE setup: The n parties S1, . . . ,Sn generate a sharing of the secret key msk. That is, party Si
obtains a share mski where mski = gαi

1 and where (α1, . . . , αn) is a linear sharing of α in Zp. Each
party Si publishes vi = e(g1, ĝ)αi . The global mpk value v = e(g1, ĝ)α is computed and published as
before. Standard protocols (e.g. [17]) enable the n parties to generate this shared msk and publish the
corresponding v, v1, . . . , vn.

13

2. Distributed blind key extraction: Distributed blind extraction for skid is similar to the non-distributed
protocol. Steps (1) and (2) of the protocol BlindExtractIBE in Section 4.2.3 remain unchanged, except
that S sends h′ to a set of active parties W ⊆ {S1, . . . ,Sn} and they all respond as in step (2) in
Section 4.2.3. Thus, party R receives

sk′id,i :=
(

mski · (h′ h)si , gsi
)

for i ∈W . (3)

For i ∈ W party R checks that sk′id,i = (d′0,i, d′1,i) is well formed using Eq. (2), but using vi instead
of v. If any of the checks fail party R aborts. Otherwise, R combines all the sk′id,i and re-randomizes
the result by choosing a random z in Zp and computing

skid =
(∏
i∈W

(d′0,i/d
′y
1,i)

λi · (gid
1 h)z,

∏
i∈W

(d′1,i)λigz
)

(4)

where {λi}i∈W are the linear secret sharing coefficients, namely α =
∑
i∈W λiαi.

Proving that an unauthorized set of decryption authorities cannot generate secret keys is a standard argument
on information theoretic linear secret sharing schemes (e.g., Shamir secret sharing).

4.2.5 Chosen ciphertext-secure public-key encryption from IBE

The final tool we need is a chosen ciphertext-secure system built from IBE. Canneti, Halevi, and Katz [10, 4]
showed how to construct a chosen-ciphertext secure public-key encryption system from any (selective) secure
IBE. Their construction works as follows:

• KeyGen: runs SetupIBE and outputs mpk as the public key and msk as the secret key.

• Enc(mpk, label,m): generates a fresh signing and verification key pair (sk, vk) for a (one-time) signature
scheme, computes ctIBE := EncIBE

(
mpk, (label, vk), m

)
, and outputs

ct :=
(
ctIBE, vk, sig

)
(5)

where sig is a signature on the first two ciphertext components, generated using sk. Note that (label, vk)
is used as the IBE identity to encrypt m.

• Dec(msk, label, ct): parse ct as (ctIBE, vk, sig). Check that sig is a valid signature on the first two
components under vk and output ⊥ if not. If sig is valid, use msk to generate the IBE secret skIBE key
for identity (label, vk) and output DecIBE(skIBE, ctIBE).

When applying this to the BB-IBE we need a collision resistant hash function H1 : {0, 1}∗ → Zp. We obtain
a chosen-ciphertext secure public-key encryption system where the encryption algorithm Enc(mpk, label,m)
works as follows: first, it chooses a random r in Zp and generates a fresh signing and verification key pair
(sk, vk) for a (one-time) signature scheme. Next, it computes w := (gH1(〈label,vk〉)

1 h) and outputs

ct :=
(
vm · vr, gr, wr, vk, sig

)
(6)

where sig is as in (5), namely a signature on the left four elements using key sk (for convenience we swapped
the roles of the groups G and Ĝ so that the ciphertext lives in G).

Note that the message m in the ciphertext (6) is encoded as vm ∈ GT which will be convenient later when
we use this system. This encoding means that the decryption algorithm outputs vm instead ofm. Recovering
m will require computing the discrete-log of vm base v. Fortunately this is not a problem because when we
use this system the message m will always be short, say 64-bits, so that computing discrete log can be done
in time about 232 using Pollard’s Kangaroo method [25]. This should only take a few minutes on a modern
computer.

14

S"

S"

�!

xi,j,t"

I"

ct"⟵"EncIBE("mpk,"(i,j,t),""xi,j,t!)"

C"

J"

D1"

Dn"

�!

Log"

ct"
ct"

yes/no"

sk"⟵"BlindExtractIBE(i,j,t)"

�!
sk"ct"

msk1!

mskn!

AuditRecord(i,j,t)"

BlindExtractIBE"

Figure 3: Using uncleared decryption authorities. The parties involved are as in Figure 2 except that now
all requests to the decryption authorities are blinded as in Eq. (1). As before the authorities are needed for
every decryption request and they help ensure that every request is properly logged at L.

4.3 The complete system
Using the building blocks described above, we can now describe the complete system. We describe the system
in terms of the usual parties, namely Si, A,C, L,Dj (see Figure 3). The underlying auditable threshold
oblivious transfer system is obtained by merging the investigator and the court into one entity R, and
merging the log server into each Di to obtain the distributed senders Si.

Protocol 4 (using uncleared decryption authorities with after-the-fact auditability). The system
works as follows:

• Setup. the system is initialized as follows:

1. First, generate a master secret key msk and public parameters mpk in the BB-IBE scheme by
running algorithm SetupIBE. The key msk is split across the n decryption authorities D1, . . . , Dn

and is destroyed. For i = 1, . . . , n each Di now has a share mski of msk. It publishes vi as in
Section 4.2.4 along with a (random oracle) proof of knowledge of the corresponding mski.
The master key msk will never be reconstituted at a single location. If needed, msk can be gener-
ated in split form by running a protocol from [17] among the decryption authorities D1, . . . , Dn.

2. Generate an encryption/decryption key-pair skL,pkL for a public-key encryption system. The key
skL will be stored at the logging server and pkL will be published to all parties.

3. The court C and each decryption authority Di will generate a signing and verification key pair
for a signature scheme and publish the verification keys to all parties.

4. As in Protocol 3, the log server maintains a counter ctr that is initially set to 0 and is incremented
after every decryption transaction completes.

• Ordinary operation. Using the setup above the protocol protects data elements as follows:

1. At the end of each time interval t, data source i computes

ct1 := EncIBE(mpk, (i, j, t), ri,j,t) , ct2 := xi,j,t ⊕H(ri,j,t) (7)

where ri,j,t is a random element in GT chosen by the data source Si, and H : GT →M is a public
hash function modeled as a random oracle.
The hybrid encryption method in (7) of data xi,j,t using tag (i, j, t) is taken directly from the
adaptive oblivious transfer protocol of [19] (presented in their Figure 3).

15

2. Data source Si sends cti,j,t = (ct1, ct2) to the investigator I.

• Investigator queries. Over a secure channel (e.g. in person, in a courtroom), the investigator I presents
to the court C a record tag id = (i, j, t) and asks for the corresponding ciphertext ctid to be decrypted.
The investigator I provides its signature on the request. Once the judge approves the request, the
court C issues a legal warrant and performs the following operations:

1. The court C reads the current state of the counter ctr stored at the log server L.
2. The court C then sends the ciphertext ctC := Enc

(
pkL, ctr, id

)
to the log server encrypted under

the log server’s public key pkL (here the label is set to ctr) and the ciphertext is signed by the
court. The log server adds the data to the log. We denote by randC the randomness used in
creating the ciphertext ctC.
The court can send another ciphertext to the log server L, encrypted under pkL with label ctr and
signed by the court, containing all auxiliary information associated with the request, including
I’s signature on the request. The log server adds the data to the log.

3. Next, the court C and active decryption authorities D1, . . . , Dn engage in protocol BlindExtractIBE

from Section 4.2.4 to blindly extract skid where C plays the role of R.
We let y denote the random blinding value chosen by C. The court C computes h′ ← gid

1 g
y and

then executes the following protocol with each active authority Di:
(a) C sends (h′, ctr) to Di.
(b) The authority Di logs the request with the log server by sending it the message from C signed

by the authority’s signing key. The log server responds with ctC and the court’s signature
on ctC, and confirms that ctr is the current value of its counter ctr. If not or if the court’s
signature on ctC is invalid, the decryption authority aborts.

(c) Next, C proves in zero knowledge to Di that it knows (y, id) such that h′ = gid
1 g

y.
If the proof fails the authority aborts.

(d) Finally, authority Di uses its share mski of the master secret msk to derive sk′id,i as in Eq. (3)
and sends this value back to C.

4. The court C verifies the received blinded values sk′id,i as in Section 4.2.4 (using Eq. (2)) and
combines all the partial keys sk′id,i using Eq. (4) to obtain the (unblinded) IBE decryption key skid
needed to decrypt ctid. It sends skid to the investigator I over a secure channel.

5. The investigator I receives skid and decrypts the record ctid by invoking DecIBE(skid, ctid).

Security of the system. The underlying adaptive oblivious transfer protocol was shown to be fully
simulation secure by Green and Hohenberger [19, Thm. 4.4]. Informally, this proves that (i) the parties
L,D1, . . . , Dn learn nothing beyond the encryption of id under pkL, and (ii) the investigator cannot decrypt
any ciphertext ctid′ for id′ 6= id.

Because every key extraction request is logged, misbehaving parties in this system will be discovered
during an after-the-fact audit. However, during the audit it may not be possible to determine which records
they accessed. By enhancing the proof of knowledge in Step (3c) to also verify accuracy of the ciphertext
ctC written to the log, we can ensure that an after-the-fact audit will reveal which records were accessed by
misbehaving parties. This brings us to our final protocol.

Protocol 5 (using uncleared decryption authorities with online auditability). The system works
very similarly to Protocol 4.

• Setup. The same as Protocol 4.

• Ordinary operation. The same as Protocol 4, except that instead of using a standard RSA hybrid
public key encryption scheme to encrypt under the escrow key pkL, all of the parties instead use the
more advanced IBE-based system of Canetti, Halevi, and Katz, described in Section 4.2.5.

16

• Investigator queries. The same as Protocol 4, except in Step 3(c), the court C proves in zero knowledge
to Di that it knows (y, id, randC) such that

h′ = gid
1 g

y and ctC = Enc
(
pkL, ctr, id ; randC

)
. (8)

Here randC is the randomness used in creating the ciphertext ctC sent to the log server L.
If the proof fails the authority aborts. This proof of knowledge proves to Di that h′ is a blinding of
the identity id contained in ctC. In other words, ctC is an encryption of the identity whose key is being
retrieved.

We remark that analogous accountability procedures could be used to include the investigator’s signed
encrypted requests in the log also, along with the court’s signed encrypted orders, and prove consistency
between the court’s and the investigator’s entries, but we omit these procedures here for clarity of exposition.

The efficiency of Step (3c) in Protocol 5. The public key system used by the log server L should be
chosen so as to make the proof of knowledge (8) efficient. While any zero knowledge proof of knowledge
system can be used we briefly describe one efficient instantiation. Suppose the log server L chooses pkL as
a public-key in the public key system described in Section 4.2.5. Then ctC is as follows:

ctC =
(
vid

L · vrL, gr, wr, vk, sig
)

(9)

where w := (gH1(〈ctr,vk〉)
1 h) and id ∈ Zp is an encoding of (i, j, t). All other elements are as in Section 4.2.5.

Parse ctC as ctC = (ct0, ct1, ct2, vk, sig). Then the zero knowledge proof of knowledge in (8) can be done as
follows:

1. Di checks that sig is a valid signature on (ct0, ct1, ct2, vk) under key vk and aborts if not.

2. The court C proves in zero knowledge to Di that it knows (y, id, r) such that

h′ = gid
1 g

y , ct0 = vid
L v

r
L , ct1 = gr , ct2 = wr , 0 ≤ id < 264 . (10)

Proving knowledge of such (y, id, r) can be done efficiently using standard zero knowledge techniques [13].
The range proof on id (the right most statement in (10)) is needed to ensure that the discrete-log of
vid

L base vL can be computed efficiently during decryption. It can be done efficiently as in [12, 7, 11].
Note that 64 bits is more than enough to encode id = (i, j, t).
In some cases it may be desirable to embed more information in the identifier id, in addition to (i, j, t),
causing the identifier id to be longer than 64 bits. This can be accommodated by breaking the identifier
into blocks of 64 bits and encrypting all blocks as in (9), all with the same label ctr. The proof of
knowledge (10) will need to be augmented with a simple consistency check to prove that the sum of
all the blocks is equal to the value of id used in the definition of h′.

5 Prototype implementation
To assess the feasibility of our protocols, we have an implementation in progress for Protocol 4. The prototype
code includes an implementation of all of the necessary cryptographic primitives, among them a complete
and fully-functional implementation of the Boneh-Boyen identity-based encryption (BB-IBE) scheme [2].

In Protocol 4, by far the most computationally-demanding step is the step in which the data sources
encrypt the data records to be sent to the data custodian. As noted in Section 1.2, these records may
include one data record, possibly an empty one, for every possible user j during each time interval t, to
prevent attacks based on traffic analysis and data volume. This amounts to a potentially large volume of
data that must be processed during each time interval t (in our example, each day). If we are dealing with
a telecommunications carrier or a large cloud service provider, the number of such data records might range

17

in the tens to hundreds of millions per day. For our proposed protocol to be viable, the data sources must
be able to process these all of these data in a timely manner each day.

The steps involved for the data sources to process these data records are as follows. Recall from Section 4.3
that the data sources in Protocol 4 uses hybrid encryption: that is, in order to encrypt a data record xi,j,t,
they first encrypt the record using a symmetric scheme that provides authenticated encryption, and then
encrypt the underlying symmetric key using the IBE scheme under the identity derived from (i, j, t) (in our
implementation, we apply SHA-256 to a safely-encoded form of the tuple (i, j, t), and use the output as the
identity in the IBE scheme).

In our benchmarks, we measure the time necessary for the data sources to process 500 million data records
in this manner. This number is intended to estimate the total number of records that might be generated
across multiple telecommunication carriers in a single day, which is a plausible duration for the time interval
t in our model. Each data record consists of a header (i, j, t) and up to 1 KB worth of data, which could
represent daily email or phone call metadata in a telecommunications database.

Our implementation code uses 128-bit AES/GCM for its authenticated encryption scheme, as well as the
BB-IBE scheme over a 289-bit MNT elliptic curve. Both of these choices target a 128-bit security level, as
128-bit security is the widely adopted cryptographic standard with ubiquitous library support. (We remark,
however, that it would be straightforward to extend the protocol to a 256-bit security level for real-world
deployments, and our benchmarks indicate that this would only slow down the main computational bottleneck
by about a factor of two.) The code for our prototype in progress includes a complete implementation of the
BB-IBE cryptosystem written in C. We use the PBC library [23] for elliptic-curve and pairing support, and
the GNU Multiple Precision Arithmetic Library (GMP) for big-integer arithmetic. We also use the OpenSSL
crypto library for some additional cryptographic primitives such as AES/GCM and SHA-256.

In our implementation benchmark, we encrypt each record first using 128-bit AES/GCM and then encrypt
the AES key using BB-IBE under the identity derived from (i, j, t). Since this process is largely parallelizable,
we distribute the work across a cluster with 500 cores (by current standards, this would roughly correspond
to a rack of machines). More concretely, each node in the cluster is responsible for processing a subset of
the records. Our results demonstrate that using a small computing cluster of 500 cores, we can process 500
million records in just under two hours.

We also give an estimate of the amount of time needed to process a warrant request via the procedure
described in Protocol 4. Using our BB-IBE implementation, we measured the amount of time needed for all
IBE operations in the protocol. With 10 decryption authorities, the total time needed for IBE operations
across all parties is just under 3 seconds. The remaining pieces of the warrant request component of Protocol
4 consist exclusively of public-key operations (encryption and signing) as well as network communication
over TLS between the different parties. With 10 decryption authorities, a conservative bound on the total
number of public key operations is 100, and if we use 2048-bit RSA (targeting a 128-bit security level) for
the public key operations, all of these operations can be completed in under a minute. Factoring in network
latencies and the cost of communication over TLS, a conservative estimate for the time it takes for a complete
execution of the warrant request protocol is under 5 minutes. With this analysis and the above benchmarks,
we conclude that Protocol 4 is feasible at scale on large data sets consisting of billions of records.

6 Extensions
Our system can be extended in several ways. We list a few directions here.

Storing ciphertexts at a third party (the “data custodian” U). As mentioned in Section 2, for clarity
we have described all of our protocols in terms of direct communication of ciphertexts between data sources
and the investigator. However, such a design choice would sacrifice the vital “Shannon” security property
(Section 1.3): if the investigator can defeat the cryptosystem used to encrypt the records, or otherwise obtain
the master secret key, then it might be able to access many records without getting an order or transmitting
any additional data over the network—potentially making the system more vulnerable to abuse in practice
than standard solutions without cryptographic protocols. Thus, we do not believe that this kind of direct

18

message flow is viable in a real-world deployment. Instead, we now describe in more detail how to store the
ciphertexts at a third party, the “data custodian” U , who can serve one ciphertext to the investigator for
each valid (signed) order.

In a simple version of this scheme, the data source will tag each encrypted record with a tag P (KT , (i, j, t))
where P is a pseudorandom permutation and KT is a symmetric key known to the data source and the
investigator. When an order is issued for identifier (i′, j′, t′), the investigator will ask the intermediary for
the record tagged P (KT , (i′, j′, t′)).

Although the data custodian does not itself verify that the encrypted record it produces is the one covered
by the order, it does ensure the Shannon property that the number of encrypted records received by the
investigator does not exceed the number of orders that have been issued. Because the investigator receives
only one encrypted record per order, the worst it can do by breaking the encryption on records is to get an
order for one record and then access some other (single) record.

The data source does not learn which record was fetched, because only the investigator and the inter-
mediary see the permuted tag value that is accessed. The intermediary does not learn which underlying
record was accessed because it sees only the permuted tag. However, if the data source and the intermediary
collude, they can learn which record was accessed. If necessary, this collusion can be addressed by using a
longer chain of permutations controlled by multiple parties.

Refined access policies among decryption authorities. In Sections 3 and 4 we used multiple decryp-
tion authorities D1, . . . , Dn to decrypt a target ciphertext. For reasons of availability one may want to only
require t < n authorities to be contacted for every transaction. The classic Shamir secret sharing approach
lets us designate any values for t and n. The exact settings for t and n are a matter of policy.

For a system like ours, however, we may not want any set of t authorities to enable decryption. For
example, if the court C runs a decryption authority we may require that authority to participate in every
decryption request. This is easily done by additively splitting the secret key α as α = α1 + α2 in Zp for
random α1 and α2. The share α1 is given to the court C and the share α2 is split via Shamir secret sharing
among the remaining authorities. This way the court must participate in every decryption request and any
additional t of the remaining authorities can be used to complete the request. Generally, any monotone access
structure recognizable by a poly-size formula can be implemented using a linear secret sharing scheme [1].

Using a mixture of cleared and uncleared decryption authorities. Our system in Section 4 was
described with uncleared decryption authorities in mind who are not authorized to view the contents of
warrants. The messages sent to all authorities were blinded so as not to reveal any information about the
warrant. When using a mix of decryption authorities, some cleared and some uncleared, the court need
not use the blinding mechanism with the cleared authorities. The warrant subject (i, j, t) along with the
randomness randC used to create the ciphertext ctC can be sent unblinded to the cleared authorities. These
authorities will retrieve ctC from the log server, verify its authenticity, and if authentic send back their share
of the secret key ski,j,t. This simplifies the protocol between the court C and the cleared authorities.

Restricting access to sub-records. As we described the system in Section 1.2 data source Si collects
data records about user j during time period t, say one day, and this aggregate set of records forms the
plaintext data element xi,j,t identified by (i, j, t). This xi,j,t is encrypted to form the ciphertext cti,j,t. When
the investigator is given the ability to decrypt cti,j,t it obtains access to all of xi,j,t. In some cases it may
be desirable to give the investigator access to only a single record inside of xi,j,t.

Clearly one option is to shrink the time window from one day to, say, one minute so that xi,j,t only holds
records collected during a one minute window. The problem is that Si will likely need to create a record
xi,j,t even if user j had no activity during time period t. Otherwise, the absence of a ciphertext cti,j,t for
time t indicates that user j was inactive during time t and it may be desirable to not leak this information.
Consequently, if dummy records are used then shrinking the time window to one minute is undesirable since
it may introduce many dummy records and increase storage costs. A larger time window, say one day, greatly

19

reduces the number of dummy records in the system, but suffers from revealing all of user j’s activity during
time t, even if a warrant applies to only one record during that period.

When using our third scheme a simple solution is to encrypt every record under the IBE public key
(i, j, T) where T is the precise time that the associated event took place. The set of resulting ciphertexts
for events that took place during time period t is assembled to form xi,j,t, possibly padding xi,j,t to some
minimum length. This container xi,j,t is then encrypted under the IBE public key (i, j, t) to form cti,j,t.
When a warrant is issued for an event at time T the decryption authorities first release the secret key ski,j,t
to enable decryption of cti,j,t. Then another round with the decryption authorities releases the desired secret
key ski,j,T that provides access to the record at time T and nothing else. This approach prevents leaking
the amount of activity for each user in the clear without adding too much storage overhead.

7 Conclusion
In this work, we describe a series of cryptographic protocols to facilitate the secure execution of warrants
and legal orders authorizing access to data held by private parties. There are many natural scenarios where
such a protocol might be useful, for instance, in the scenario where law enforcement agencies need to obtain
legal clearance in order to access data about individuals. We present five protocols that achieve different
security guarantees and require varying degrees of complexity.

In our first and second protocols, we require that the court maintain a secret key used to control access to
plaintexts. While conceptually very simple, this protocol has the undesirable property that there is a single
point of failure, namely, if the court’s secret key is compromised, the adversary can potentially obtain access
to arbitrary records. To remove this single point of failure, in protocol three, we present a protocol that
distributes the record decryption process across multiple parties. The drawback in this protocol, however,
was that the decryption authorities learned the investigator’s request. To address this potential problem, we
present two additional protocols based on a small extension to adaptive oblivious transfer. In these protocols,
the decryption authorities do not learn the investigator’s query; thus, the protocols satisfy a stronger notion
of security.

To assess the feasibility of our proposed protocols, we benchmarked some of the core cryptographic
primitives in Protocol 4 (which satisfies a reasonably strong notion of security and provides after-the-fact
auditability). Our benchmarks indicate that the most computationally-intensive component of the protocol,
that is the process of encrypting all of the records, can be performed efficiently. Specifically, processing a
database of 500 million records takes under two hours on a small computing cluster. Since this process is
entirely parallelizable, scaling up to handling billions of records is not a problem. Moreover, our benchmarks
for the underlying cryptographic primitives indicate that a warrant request can be processed in under five
minutes. These experiments thus demonstrate the viability of our protocol as a means for secure execution
of warrants.

By enabling more secure execution of warrants, our protocols create new public policy options. For exam-
ple, in policy settings where the contents of orders are secret but accountability is especially important, such
as warrants for access to communications data for foreign intelligence, our protocols show that accountability
can be increased while at the same time maintaining or improving the security of the warrant process and
protecting against abuse or the failure of technical protections. More generally, methods like ours create the
hope that the execution of orders and warrants can be more secure for honest investigators, more protective
of privacy for those who are not the subject of legitimate orders, and subject to more effective oversight by
political institutions and the public.

Acknowlegments
The work was supported by the National Science Foundation.

20

References
[1] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion Institute of

Technology, Haifa, Israel, 1996.

[2] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles. J.
Cryptology, 24(4):659–693, 2011. extended abstract in Eurocrypt 2004.

[3] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold encryption
without random oracles. In CT-RSA, pages 226–243, 2006.

[4] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[5] Dan Boneh and Matthew K. Franklin. Efficient generation of shared rsa keys. J. ACM, 48(4):702–722,
2001.

[6] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM Journal
on Computing, 32(3):586–615, 2003. Preliminary version in Advances in Cryptology – CRYPTO ’01,
pages 213–229, 2001.

[7] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In EUROCRYPT, pages
431–444, 2000.

[8] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious transfer. In EURO-
CRYPT, pages 573–590, 2007.

[9] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure against adap-
tive chosen ciphertext attack. In EUROCRYPT, pages 90–106, 1999.

[10] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In EUROCRYPT, pages 207–222, 2004.

[11] Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat. Additive combinatorics and discrete logarithm based
range protocols. In ACISP, pages 336–351, 2010.

[12] Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. Easy come - easy go divisible cash. In EURO-
CRYPT, pages 561–575, 1998.

[13] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

[14] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO, pages 307–315, 1989.

[15] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176.

[16] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

[17] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. J. Cryptology, 20(1):51–83, 2007.

[18] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages
445–464, 2006.

[19] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable oblivious
transfer. In ASIACRYPT, pages 265–282, 2007.

21

[20] IBM. Cryptocards: IBM systems cryptographic hardware products. www-03.ibm.com/security/
cryptocards/.

[21] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to
adaptive ot and secure computation of set intersection. In TCC, pages 577–594, 2009.

[22] Seny Kamara. Are compliance and privacy always at odds? Available at http:/outsourcedbits.org/
/2013/07/23/are-compliance-and-privacy-always-at-odds/, July 2013.

[23] Ben Lynn. On the Implementation of Pairing-Based Cryptosystems. PhD thesis, Stanford University,
2009. http://crypto.stanford.edu/pbc/thesis.pdf.

[24] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In CRYPTO, pages 573–590,
1999.

[25] John Pollard. Kangaroos, monopoly and discrete logarithms. J. Cryptology, 13(4):437–447, 2000.

[26] Michael O. Rabin. How to exchange secrets with oblivious transfer, 1981.

[27] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology – CRYPTO
’84, pages 47–53, 1984.

[28] Victor Shoup. Encryption algorithms – part 2: Asymmetric ciphers. ISO Standard 18033-2, May 2006.
www.shoup.net/iso/.

[29] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.
J. Cryptology, 15(2):75–96, 2002.

[30] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages
114–127, 2005.

22

www-03.ibm.com/security/cryptocards/
www-03.ibm.com/security/cryptocards/
http:/outsourcedbits.org//2013/07/23/are-compliance-and-privacy-always-at-odds/
http:/outsourcedbits.org//2013/07/23/are-compliance-and-privacy-always-at-odds/
http://crypto.stanford.edu/pbc/thesis.pdf
www.shoup.net/iso/

	1 Introduction
	1.1 Goals
	1.2 Parties in the system
	1.3 Desired security properties
	1.4 Our results

	2 A simple design requiring trust in the court's computer systems
	3 Eliminating a single point of trust
	3.1 The system when all decryption authorities are cleared

	4 Eliminating a single point of trust using uncleared authorities
	4.1 Auditable oblivious transfer
	4.2 Cryptographic primitives
	4.2.1 Identity based encryption (IBE)
	4.2.2 The Boneh-Boyen IBE system (BB-IBE)
	4.2.3 Blind-IBE
	4.2.4 Secret sharing the IBE master secret
	4.2.5 Chosen ciphertext-secure public-key encryption from IBE

	4.3 The complete system

	5 Prototype implementation
	6 Extensions
	7 Conclusion

